Ученые выяснили, как снизить вязкость нефти в 14 раз и повысить добычу

Ученые выяснили, как снизить вязкость нефти в 14 раз и повысить добычу

В ПНИПУ выяснили, как снизить вязкость нефти в 14 раз / © Gerhard Crous, Unsplash

Ученые выяснили, как снизить вязкость нефти в 14 раз и повысить добычу

Статья опубликована в журнале «Вычислительная механика сплошных сред». Исследование выполнено в рамках реализации программы стратегического академического лидерства «Приоритет-2030».

Около 55% запасов России приходятся на высоковязкую нефть, добывать которую сложнее, чем мало- и средневязкую. Вязкость зависит от различных примесей в ее составе и концентрации тяжелых углеводородов (смол, асфальтенов, парафинов).

Добывают высоковязкую нефть с помощью электрических центробежных насосов, которые создают нужное давление для подъема и перекачивания флюида. Однако из-за высокой вязкости нефти оборудование перегружается и выходит из строя при критических значениях вязкости. Для снижения уровня последней используют специальные греющие устройства, которые устанавливают в призабойную область скважины. При нагреве нефть становится менее вязкой, а работа насосов стабильной.

Во время добычи углеводородов важно поддерживать необходимую температуру и контролировать распределение тепла для предотвращения выхода из строя перекачивающего оборудования и обеспечения необходимой величины дебита.

Для анализа процессов тепломассопереноса нефти в скважине с призабойным нагревателем использовался метод математического моделирования. Для оптимизации процесса ученые Пермского Политеха создали трехмерную компьютерную модель, включающую саму скважину, насосно-компрессорную трубу с отверстиями, по которой жидкость поступает в насос, и соединенный с ней нагреватель цилиндрической формы. Модель учитывает распределение температуры, скорости и вязкости нефти, а также параметры самого греющего устройства



Реализация модели позволила определить рациональное значение мощности нагревателя, позволяющее снизить вязкость нефти ниже критического для насоса значения на том или ином месторождении, оценить влияние длины нагревателя и условия выхода его из строя.

С помощью модели ученые изучили нагреватели разной мощности (1; 1,75; 2,25 кВт), и длины (1, 3 и 5 метров), но при этом поддерживали одинаковую температуру в 122°С. Ученые экспериментально выяснили, что максимальная температура, при которой могут эксплуатироваться устройства подобного типа, составляет 125°С. Более высокая — может привести к перегреву оборудования и преждевременному выходу из строя.

 – Мы выяснили, что наиболее интенсивный нагрев нефти наблюдается в первых двух метрах трубы при использовании устройства длиной в один метр. Это связано с тем, что его удельная мощность выше, чем у 3- или 5-метрового. При этом для всех типов устройств изменения температуры происходят почти одинаково: сначала она достигает максимума, а потом постепенно охлаждается практически с одинаковой скоростью, – объясняет Наталья Труфанова, заведующая кафедрой «Конструирование и технологии в электротехнике» ПНИПУ, доктор технических наук.

Модель позволила определить, как параметры нагревателя влияют на температуру нефти на входе в насос. Так, длина устройства в один метр и мощность 1 кВт повышает ее значения до 39,11°С, 3 метра с мощностью 1,75 кВт – до 52,39°С, а 5 метров и 2,25 кВт – до 60,18°С. С увеличением температуры понижается и вязкость нефти. В целом все три нагревателя могут использоваться для ее снижения, но этот фактор также зависит от мощности используемого насоса. Для некоторого оборудования нагреватель в 1 метр не подойдет, а в 3-5 метров будут более эффективны.

– В результате мы можем сделать вывод, что применение устройства электрического нагрева в призабойной зоне скважины с наибольшей мощностью (2,25 кВт) дает возможность до 60°С повысить температуру нефти и в 14 раз снизить ее вязкость, – поделился Дмитрий Пинягин, аспирант кафедры «Конструирование и технологии в электротехнике» ПНИПУ. 

Разработка ученых Пермского Политеха поможет специалистам в нефтедобывающей практике определить температуру и характер течения углеводородов на заранее известном участке скважины. Применение модели позволит рассчитать необходимую длину нагревателя, которой будет достаточно для снижения вязкости нефти и обеспечения бесперебойной работы электрического центробежного насоса. Это, в свою очередь, повысит долговечность оборудования и снизит материальные затраты при разработке нефтяных месторождений. Источник материала и фото: "Naked Science"